Cotswold Edge Sixth Form

Here you are matching the tiles.

$(2+\sqrt{3})^{2}$	$11+6 \sqrt{2}$	$17+12 \sqrt{2}$	$12-6 \sqrt{3}$
$6(2-\sqrt{3})$	$7+4 \sqrt{3}$	$(3-\sqrt{3})^{2}$	$(1+\sqrt{3})(3+\sqrt{3})+1$
$(2-2 \sqrt{7})^{2}$	$(3+\sqrt{2})^{2}$	$(3+2 \sqrt{2})^{2}$	$6 \sqrt{2}(1+\sqrt{2})-1$
$32-8 \sqrt{7}$	$(3+\sqrt{7})^{2}$	$14+6 \sqrt{5}$	$3+4(1+\sqrt{3})$

Here you are finding a way across the board from left to right

Roots and Indices Maze

$2^{6} \times 2^{3}$	$3^{2} \times 2^{3}$	$(\sqrt{ } 16)^{2}$	$\left(2^{3}\right)^{3}$	$8^{3} \div 8$	$4^{4} \times 4^{-3}$	$(\sqrt[3]{8})^{4}$	8×4^{2}
$\sqrt{ } 8^{3}$	$\left(2^{3}\right)^{2}$	$8^{7} \times 8^{-5}$	4^{3}	$2^{-2} \times 2^{7}$	64^{0}	$2^{5} \times 2^{3}$	$4^{7} \div 2^{3}$
$(\sqrt{6} 6)^{3}$	8^{2}	$2^{2} \times 2^{3}$	$2^{3} \times 2^{3}$	$\left(2^{3}\right)^{3}$	$(\sqrt[3]{8})^{6}$	$4^{6} \times 4^{-3}$	$2^{2} \times 4^{2}$
2^{6}	$(\sqrt{ } 64)^{2}$	$4^{6} \times 4^{-2}$	$(\sqrt{ } 16)^{3}$	$\left(2^{2}\right)^{4}$	$8^{3} \div 2^{3}$	$2^{-3} \times 2^{7}$	$\left(2^{2}\right)^{4}$
3^{5}	$2^{6} \times 2^{1}$	8^{3}	$4^{5} \div 2^{4}$	$(-4)^{-3}$	$\left(2^{2}\right)^{3}$	$(\sqrt{ } 8)^{3}$	$4^{6} \div 2^{6}$
$4^{3} \times 4^{-3}$	$\left(2^{5}\right)^{1}$	$(\sqrt[3]{64})^{2}$	$2^{3} \times 8$	$2^{-1} \times 2^{7}$	$\left(\frac{1}{4}\right)^{-3}$	16^{2}	64

Cotswold Edge Sixth Form

You must show all your working.

Circle area 1

This diagram shows an equilateral triangle of side length 6 cm drawn inside a circle so that each corner touches the circumference of the circle

What area of the circle is shaded?

If you change the size of the Equilateral triangle does the proportion of the circle shaded change?

Cotswold Edge Sixth Form

Subject:	Maths @ CSS	Assessment Point 1 - Coursework
Title of the project:	Quadratic Graphs	
Due date: First lesson back September 2018		
Learning skills and their place in the specification	Research and analysis This task enables testing of the basic understanding of how Quadratic graphs work and what the key aspects of the formulae are able to tell us.	
Specification link	http://filestore.aqa.org.uk/resources/mathematics/specifications/AQA- 7357-SP-2017.PDF	
Tasks set	What do you know about Quadratic Graphs and how can you use that knowledge to solve 3 sets of problems?	
How this links to the exam specification	Throughout you are expected to be able to factorise quadratics and sketch quadratic graphs. The skills involved in factorising or completing the square or solving intersecting equations must become second nature.	
How to complete the task:	See attached information	
Resources or links	Use Higher GCSE revision Guide. Mymaths, Mathswatch and the internet.	
Link to Assessment Task 2 - Test	This will involve key topics during term 1 and 2 and 3. Staff contact and email address: Number of learning hours it will take to complete Emma.lynch@chippingsodburyschool.com Christopher.Chapman@chippingsodburyschool.com 1-3 hrs Minimum 10 hours total for all tasks	

You must show all your working.

A sketch may help.

All, some or none?

For each question there are 5 related statements. In each case decide which of them are true.

1. The quadratic $y=x^{2}-2 x-3$:
a. rearranges to $y=(x-1)^{2}-2$
d. has an axis of symmetry at $x=1$
b. Has a y intercept at -3
e. has a minimum value of -3
c. factorises to $y=(x-3)(x+1)$
2. The quadratic $y=(x+1)^{2}+2$:
a. rearranges to $y=(x+1)(x+2)$
d. has an axis of symmetry
b. has a minimum value of 2
e. doesn't cross the x axis
c. always has positive values for y
3. All quadratics:
a. have an axis of symmetry
d. cross the y axis once
b. cross the x axis
e. have a minimum value
c. can be arranged to a completed square format

Challenge: For any statements that are false in question 3, give counter examples and explain when and why they are false.

